Calorie restriction inhibits ovarian follicle development and follicle loss through activating SIRT1 signaling in mice

نویسندگان

  • Wei-Juan Liu
  • Xing-Mei Zhang
  • Na Wang
  • Xiao-Ling Zhou
  • Yu-Cai Fu
  • Li-Li Luo
چکیده

BACKGROUND Silent information regulator 2 related enzyme 1 (SIRT1) is one of the key factors in the mechanism of calorie restriction (CR) extending lifespan of animals. The aim of the study is to investigate if CR prolongs ovarian lifespan in mice through activating SIRT1 signaling. METHODS In the present study, 21 female C57BL/6 mice were divided into three groups: the control (n = 7), CR (n = 7), and SRT1720 (n = 7) groups. After the 26-week treatment, the number of ovarian follicles at each stage was counted, and Western blot was performed. RESULTS The number of surviving follicles in ovaries of the SRT1720 group was less than that of the CR group but more than that of the normal control (NC) group. The number of atretic follicles in the ovaries of the SRT1720 group was similar to that of the CR group but less than that of the NC group. The number of primordial follicles in the ovaries of the SRT1720 group was less than that of the CR group but more than that of the NC group. The numbers of primary follicles, secondary follicles, antral follicles, and corpora lutea in the SRT1720 group were similar to those in the CR group. Western blot analysis showed that the expression of SIRT1, SIRT6, FOXO3a, and NRF1 proteins was upregulated, and p53 was downregulated in both the CR group and the SRT1720 group compared to the control group. CONCLUSIONS Our results indicate that CR inhibits the activation of primordial follicles and development of follicles at different stages, thus preserving the reserve of follicle pool (at least partly) through activating SIRT1 signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIRT1 activator (SRT1720) improves the follicle reserve and prolongs the ovarian lifespan of diet-induced obesity in female mice via activating SIRT1 and suppressing mTOR signaling

BACKGROUND The prevalence of obesity is increasing worldwide and significantly affects fertility and reproduction in both men and women. Our recent study has shown that excess body fat accelerates ovarian follicle development and follicle loss in rats. The aim of the present study is to explore the effect of SIRT1 activator SRT1720 on the reserve of ovarian follicle pool and ovarian lifespan of...

متن کامل

Re-activation of Wnt/β-catenin Signaling Pathway in Hair Follicle Stem Cells in Treatment of Androgenetic Alopecia

Hair loss is a common hair disorder in human population. It affects quality of life and there are ongoing attempts to find permanent treatment for this condition. But, today there is no completely safe and protective treatment for all. Hair follicle stem cells are alive, but quiescence in androgenetic alopecia and are potentially active and can proliferate and differentiate, then regenerate hai...

متن کامل

Rapamycin prolongs female reproductive lifespan

www.landesbioscience.com Cell Cycle 3353 The pool of ovarian primordial follicles is established during embryonic development in humans, or after birth in rodents, and serves as the source of developing follicles and fertilizable ova for the entire length of female reproductive life. Once the pool of primordial follicles has been exhausted, menopause occurs in women around 50 y old. With modern...

متن کامل

Effect of maternal anastrozole treatment on ovarian follicle development in neonatal mouse: A morphologic study

Introduction: The origin of neonatal oocyte development is unknown. However, estrogen plays an essential role during development of the female reproductive system. Anastrozole is used as both ovulation stimulating and an anticancer drug. The aim of this study was to evaluate the impact of Anastrozole on follicular development and differentiation in mice. Materials and methods: In the present s...

متن کامل

Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte.

The mammalian ovarian follicle consists of a multilayered complex of somatic cells that surround the oocyte. A signal from the follicle cells keeps the oocyte cell cycle arrested at prophase of meiosis I until luteinizing hormone from the pituitary acts on the follicle cells to release the arrest, causing meiosis to continue. Here we show that meiotic arrest can be released in mice by microinje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2015